NCERT Solutions for Class 8 Maths Chapter No. 2
EXPONENTS
- Chapter No. 2. EXPONENT
INTRODUCTION
- When a is a number then a × a × a × ……….×….(n times) then the product is where 'n' is called exponent and 'a' is called base.
- Some formulas:
(1) am × an = am+n
(2) am
÷ an = am-n
(3) (am)n =
am×n
(4) (ab)n =
an × bn
(5) an = 1/(a-n)
(6) a0 = 1
(7) (-1)Even no. =1
(8) (-1)Odd no. = -1
(9) (-a)m = {(-1) × a}m = (-1)m × am
So, (-a)m is positive or negative depends on (-1)m
If p and q is a rational number then
[p\q]m = pm \ qm and [p\q]-m
= [q\p]m
- When a is a number then a × a × a × ……….×….(n times) then the product is where 'n' is called exponent and 'a' is called base.
- Some formulas:
(2) am
÷ an = am-n
(3) (am)n =
am×n
(4) (ab)n =
an × bn
(5) an = 1/(a-n)
(7) (-1)Even no. =1
(8) (-1)Odd no. = -1
(9) (-a)m = {(-1) × a}m = (-1)m × am
So, (-a)m is positive or negative depends on (-1)m
If p and q is a rational number then
[p\q]m = pm \ qm and [p\q]-m
= [q\p]m
Exercise 2.1
Q.1. Simplify the following :
(a) (-5)3
Sol:- (-5)3 = {(-1) × 5}3
(a) (-5)3
Sol:- (-5)3 = {(-1) × 5}3
= (-1)3
× 53
= (-1) × (5 × 5 × 5)
= -125 Ans.
(b). (-4)5
Sol:- (-4)5 =
{(-1) × 4}5
= (-1)5
× 45
= (-1) × ( 4
× 4 × 4 × 4 × 4)
= -1024 Ans.
(c). (-2)6
Sol:- (-2)6 = {(-1) x 2}6
(c). (-2)6
Sol:- (-2)6 = {(-1) x 2}6
=
(-1)6 × 26
=
1 × (2 × 2 × 2 × 2 × 2 × 2)
= 64 Ans.
(d). (-3) 6
Sol:- (-3) 6 = {(-1)
x 3}6
=
(-1)6 x 36
=
(1) x ( 3 x 3 x 3 x 3 x 3 x 3 )
= 729 Ans.
Q.2. Write the following in the form of exponents. :
(a). 54 x (-5)2
Sol:- 54 x (-5)2 = 54 x {(-1) x
5}2
= 54 x (-1)2 x 5 2
= (-1) 2 x 54 x 52
= 1 x 54 +2
= 1 x 56
= 56
Ans.
(b). 15 × (-15)25
Sol:- 15 × (-15)25 = 15 × {(-1) × 25 }25
= 15 × (-1)25 × (15)25
= (-1)25 × 15 × 1526
= -1 × 151+25
= -1 × 1526
= -(15)26 Ans.
(c). 125 ÷ (-12)3
Sol:- 125 ÷ (-12)3 =
125/ (-12)3
= 125 / {(-1×12}3
=
125 / (-1)3 × 123
= 125/ -1 × 123
= -125-3
= -(12)2 Ans.
(d). (-p)14 ÷ (-p)7
Sol:- (-p)14 ÷ (-p)7
= (-p)14/ (-p)7
= {(-1) × p}14 / {(-1) × p}7
= (-1)14 × p14/
(-1)7 × p7
=
-1 × p14-7
=
-1 × p7
=-(p)7 Ans.
Q.3. Verify the given statements by giving both the sides.
(a). (-2)4 × (-2)2 = (-2)8 ÷ (-2)2
(a). (-2)4 × (-2)2 = (-2)8 ÷ (-2)2
Sol:- L.H.S. (-2)4 × (-2)2 = {(-1) ×2}4 × {(-1) × 2}2
=
(-1)4 × 24 ×
(-1)2 ×22
= 1 ×
24 × 1 × 22
= 24 × 22
= 24+2
= 26
R.H.S. (-2)8 ÷ (-2)2 = (-2)8 /
(-2)2
= {(-1) × 2}8 / {(-1) ×2}2
= (-1)8 × 28 / (-1)2
× 22
= 1 × 28 / 1 × 22
=
28 / 22 = 28-2 =26
Hence, L.H.S.
= R.H.S.
(b). (-3)2 × (-3)-6 =
1 / (32)2
Sol:- L.H.S. (-3)2 × (-3)-6 = (-3)2
× 1 / (-3)6
= (-3)2 / (-3)6
= {(-1) × 3}2 / {(-1)
× 3}6
= (-1)2× 32 / (-1)6
× 36
= 1 × 32 / 1 ×
36
= 32 / 36
= 32-6
= 3-4
R.H.S. 1 /
(32)2 = 1 / 32×2+
= 1 / 34
= 3-4
Hence, L.H.S.
= R.H.S.
(c). (-7)32 ÷ (-7)32 = 1
Sol:- L.H.S. (-7)32 ÷ (-7)32
= (-7)32 / (-7)32
= {(-1) × 7}32 / {(-1)
× 7}32
= (-1)32 × 732 /
(-1)32 × 732
= 1 × 732 / 1 × 732
= 732 / 732
= 732-32
= 70
=
1 R.H.S.
Hence, L.H.S = R.H.S.
Exercise 2.2
Q.1. Simplify the following :
(a). (2/7)3 (1/2)3
Sol:- (2/7)3 × (1/2)3 = (2)3 / (7)3 × (1)3 / (2)3
Sol:- (2/7)3 × (1/2)3 = (2)3 / (7)3 × (1)3 / (2)3
= (2)3 / (2)3 × 1 /
(7)3
= (2)3-3 × 1 / 7 × 7 × 7
= (2)0 × 1 / 343
= 1 × 1 / 343 = 1/343
Ans.
(b). (4/5)4 × (5/4)2
Sol:- (4/5)4 × (5/4)2 = (4/5)4 × (4/5)-2
=
(4/5)4+(-2)
=
(4/5)4-2
=
(4/5)2
=
16/25 Ans.
(c). (-5)3÷(-1/5)2
Sol:- (-5)3÷(-1/5)2 = (-5)3 ÷ (-1 × 5-1)2
= (-5)3 ÷ (-1)2 × (5-1)2
=
(-5)3 / 1 × 5-2
=
(-5)3 / (5)-2
= (-1)3 ×53/ (5)-2
=
-1 × 53/ 5-2
=
-1 × 53-(-2)
=
-1 × 55
=
-3125 Ans.
(d). (3/4)3×(3/4)-5
Sol:- (3/4)3×(3/4)-5 =
(3/4)3+(-5)
=
(3/4)3-5
=(3/4)-2
=
1/(3/4)2
=
1/ 9/16
=
1 × 16/9
= 16/9 Ans.
Q. 2. Express in the form of exponent :
(a). -25/49
Sol:- -25/49 = (-1) × 25/49
=
(-1) × 5/7×5/7
=
(-1) × 52/72
=
(-1) × (5/7)2
=
-(5/7)2 Ans.
(b). 27/125
Sol:- 27/125 = 3 × 3 × 3 / 5 × 5 ×
5
=
33/53
=
(3/5)3 Ans.
(c). 729/64
Sol:-
729/64 =
(3 × 3 × 3 × 3 × 3 × 3)/ (2 × 2 ×
2 × 2 × 2 × 2
=
36/ 26
=
(3/2)6 Ans.
Q. 3. Prove that :
(a). (5/7)7 ×
(7/5)7 – (3/19)2 × (19/3)2 = 0
Sol:-
L.H.S. (5/7)7 ×
(7/5)7 – (3/19)2 × (19/3)2 = (5/7)7×(5/7)-7 - (3/19)2 × (3/19)-2
= (5/7)7+(-7) -
(3/19)2+(-2)
=
(5/7)7-7 - (3/19)2-2
=
(5/7)0 - (3/19)0
=
1-1
=
0 R.H.S.
Hence,
L.H.S. = R.H.S. Proved.
(b). (p/q)m × (p/q)m × (q/p)m =
(q/p)-m
Sol:-
L.H.S. (p/q)m ×
(p/q)m × (q/p)m
=
(q/p)-m × (q/p)-m
×= (q/p)m
= (q/p)-m+(-m)+m
= (q/p)-m-m+m
= (q/p)-m R.H.S.
Hence, R.H.S. = L.H.S. Proved.
(c) (25/16)-4 = (16/25)4
Sol:-
L.H.S. (25/16)-4 =
1/(25/16)4
= (16/25)4
R.H.S.
Hence,
L.H.S. = R.H.S. Proved.
Q. 4. Write True or
False:
(a). (-5/4)65 =
(-5)65 / (4)65
Ans. True.
(b) (-32/19)150 = 32150
/ 19150
Ans. True.
(c). (25 × 3)5 =
25 × 35
Ans. False.
(d). (27/16)-15 = 2715/1615
Ans. False.
0 Comments:
एक टिप्पणी भेजें
If you have any doubt, Please let me know